Monatshefte für Chemie 114, 137-144 (1983)

Übergangsmetallkomplexe mit Nitronylnitroxylradikalliganden

Karl E. Schwarzhans* und Alfons Stuefer

Institut für Anorganische und Analytische Chemie, Universität Innsbruck, A-6020 Innsbruck, Österreich

(Eingegangen 23. September 1982. Angenommen 13. Oktober 1982)

Transition Metal Complexes with Nitronylnitroxylradicals as Ligands

The stable free radicals, the isomers of 4,4,5,5-tetramethylimidazoline-1oxyl-3-oxide with the 2-substituent R (R = para-, meta-, ortho-pyridyl), have been prepared and used as ligands in copper(II), palladium(II) and platinum(II) complexes. The magnetic moments and the EPR spectra of the complexes and the free radicals have been investigated. Most of the complexes show a considerable intramolecular interaction between the radicalic groups of the ligands. No intramolecular interaction was found, however, between the transition metal ions and the unpaired electrons of the ligands. But by analysis of the EPR spectra in the solid state there was found in some cases an intermolecular interaction between the metal ion [copper(II)] and the unpaired electrons of the ligands.

(Keywords: EPR spectra of transition metal complexes with radicalic ligands; Magnetic moments of complexes and ligands; Transition metal complexes of stable free radicals)

Einleitung

Seit der Darstellung des Di-tertiärbutylnitroxyls¹ haben Nitroxylradikale ein beträchtliches komplexchemisches Interesse erweckt. Es sind die verschiedensten Metallkomplexe mit Nitroxylradikalen als Liganden dargestellt worden²⁻⁴. Die beachtlich hohe thermische und chemische Stabilität dieser Liganden und deren Komplexverbindungen erleichtert die Synthese sowie eine genaue Charakterisierung. Besonders ESR-spektroskopische Untersuchungen versprechen Aufschluß über die Wechselwirkung sowohl der radikalischen Liganden untereinander im Komplex, als auch zwischen Zentralmetallion und den Nitroxylradikalliganden. Neuerdings wird die Spinmarkierung von Metallkomplexen⁵ auch zur analytischen Bestimmung von diamagnetischen Metallen bzw. Metallionen verwendet.

Experimenteller Teil

In Tab. 1 sind die verwendeten Liganden und die damit dargestellten Komplexverbindungen aufgeführt. Dort werden auch die im folgenden Text benutzten Abkürzungen für die untersuchten Verbindungen angegeben.

Die Vorstufe der Liganden wurde nach M. Lamchen und T. W. Mittag⁶ dargestellt. Das erhaltene Bishydroxylamino-2,3-dimethylbutan-dihydrogensulfat wurde anschließend mit dem jeweils frisch destillierten Pyridinaldehyd zu den Liganden L1, L2 und L3 umgesetzt⁷. Abb. 1 zeigt das Formelbild von L1.

Abb. 1. Strukturformel des Liganden L1

Die Synthese der Komplexverbindungen erfolgte, mit geringfügigen Abweichungen, nach der im folgenden angegebenen allgemeinen Vorschrift⁸. Ligand und Metallsalz (CuCl₂, K₂PdCl₄, K₂PtCl₄) werden in möglichst wenig Wasser bei 40 °C gelöst, sodann werden die Lösungen unter Rühren vereinigt.

Ligand	Komplexe	Abkürzungen
4.4.5.5-Tetramethylimidazolin-1-oxyl-		
2-p-pyridyl-3-oxid		L1
	$Cu(\mathbf{L1})_2Cl_2$	CuL1
	$Pd(L1)_{2}Cl_{2}$	PdL1
	$Pt(L1)_2Cl_2\cdot 2H_2O$	PtL1
4,4,5,5-Tetramethylimidazolin-1-oxyl-		
2-m-pyridyl-3-oxid		$\mathbf{L2}$
	$Cu(\mathbf{L2})_2Cl_2$	Cu L2
	$\mathrm{Pd}(\mathbf{L2})_{2}\mathrm{Cl}_{2}$	$\mathrm{Pd}\mathbf{L2}$
	$Pt(\mathbf{L2})_2Cl_2 \cdot 2H_2O$	PtL2
4,4,5,5-Tetramethylimidazolin-1-oxyl-		
2-o-pyridyl-3-oxid		L3
	$Cu(\mathbf{L3})_2Cl_2$	Cu L3
	$\mathrm{Pd}(\mathbf{L3})_{2}\mathrm{Cl}_{2}$	$\operatorname{Pd} \mathbf{L3}$
	$\mathrm{Pt}(\mathbf{L3})_{2}\mathrm{Cl}_{2}\cdot 2\mathrm{H}_{2}\mathrm{O}$	PtL3

 Tabelle 1. Dargestellte Verbindungen sowie deren im Text verwendete

 Abkürzungen

Das Molverhältnis Ligand zu Metallion beträgt 2:1. Nach etwa 15 min ist die Bildung eines Niederschlages zu beobachten. Man läßt 30 min weiterrühren, saugt das ausgefallene Produkt ab und wäscht es mehrfach mit wenig kaltem Wasser aus. Der gesammelte Niederschlag wird 10 h am Ölpumpenvakuum getrocknet. Abweichend von dieser Vorschrift wurden CuL1 und CuL3 aus Methanol isoliert. Die Ausbeuten liegen durchwegs über 80% der Theorie. Die Löslichkeit der erhaltenen Verbindungen ist in Wasser und in den gängigen organischen Lösungsmitteln gering, jedoch reicht sie aus, um ESR-Spektren in Lösung zu erhalten.

In Tab. 2 sind die Analysenwerte der dargestellten Verbindungen aufgeführt.

Die C-, H-, N- und O-Analysen wurden mit einem halbautomatischen Analysator der Fa. Heraeus, Typ 415, durchgeführt. Die Suszeptibilitäten wurden mit einer *Gouyschen Waage*, Bruker B-MB 6 mit Temperiereinheit, gemessen. Zur Aufnahme der ESR-Spektren diente ein Varian-E-104-A-Spektrometer mit Temperiereinheit, als Referenzsubstanz wurde *DPPH* verwendet.

Verbindung		С%	Н%	N%	0%
Cu L1	Ber.:	$47,\!80$	5,35	13,94	10,61
CuL1	Gef.:	47,39	5,21	13,71	10,51
Cu L2	Gef.:	$47,\!65$	5,59	13,83	10,22
Cu L3	Gef.:	47,51	5,60	13,82	$10,\!48$
PdL1	Ber.:	44,63	4,99	13,01	9,91
Pd L1	Gef.:	44,54	5,05	13,16	10,24
Pd L2	Gef.:	45,12	5,09	13,32	10,04
Pd L3	Gef.:	44,26	4,97	$12,\!67$	10,09
PtL1	Ber.:	37,41	4,70	10,91	12,46
PtL1	Gef.:	37,52	4,63	10,76	12,23
PtL2	Gef.:	37.20	4.42	11.38	11,97
PtL3	Gef.:	36.94	4.39	10,75	12,11

Tabelle 2. Analysenwerte der dargestellten Komplexe

Ergebnisse und Diskussion

Magnetische Momente

Die magnetischen Momente wurden bei 90 K und 295 K mit einer Gouyschen Waage gemessen, die erhaltenen Werte sind in Tab. 3 angegeben.

Die Messungen erfolgten im Festzustand. Zu Vergleichsmessungen wurde $HgCo(CNS)_4$ verwendet, dessen magnetisches Verhalten im angegebenen Temperaturbereich bekannt ist. Die berechneten effektiven magnetischen Momente zeigen sowohl für die freien Liganden als auch für sämtliche Metallkomplexe keine Temperaturabhängigkeit, die erhaltenen Werte sind bei 90 K und 295 K etwa gleich. Man kann

Verbindung	90 K	$295\mathrm{K}$
L1	1,84	1,85
PdL1	2,41	2,62
PtL1	2,54	2,55
CuL1	3,13	3,14
L2	1.65	1,66
Pd L2	2,46	2.47
PtL2	2,48	2,44
Cu L2	2.89	2,91
L3	1.80	1.84
Pd L3	2.48	2.54
CnL3	2.98	2.98

 Tabelle 3. Magnetische Momente der dargestellten Verbindungen in Bohrschen Magnetonen

Tabelle 4. ESR-Parameter der Festkörperspektren

Verbindung	$g ext{-} ext{Faktor}$	Signalhalbwertsbreite in Gauß
		up♥₩_₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
L1	2,0075	14,5
CuL1	2,0355	98
PdL1	2,0069	9,1
PtL1	2,0067	13,5
L2	2,0077	11
Cu L2	2,0477	71
Pd L2	2,0076	11,5
$\operatorname{Pt}\mathbf{L2}$	2,0068	9.5
L3	2,0074	9
Cu L3	2,0065	11
	2,0754	520
PdL3	2.0079	14.5

daraus folgern, daß die ungepaarten Elektronen in den Liganden der Metallkomplexe sich im Wesentlichen gegenseitig nicht beeinflussen und auch nicht mit den ungepaarten Elektronen der Kupfer(II)-ionen wechselwirken. Die Überstimmung der erhaltenen Werte mit den für das Vorliegen von ungekoppelten Spins berechneten ist gut.

ESR-Spektren

In Tab. 4 sind die g-Faktoren und Signalhalbwertsbreiten zusammengestellt, die aus den ESR-Spektren der polykristallinen Substanzen bei Raumtemperatur erhalten wurden.

Aus den angegebenen Parametern der Festkörperspektren folgt. daß sich Linienbreiten wie auch q-Faktoren der meisten Komplexe nicht wesentlich von denen der freien Liganden unterscheiden. Die Linienbreiten liegen im Bereich von 9 bis 17 Gauß. Ausnahmen sind hier die Komplexe CuL1 und CuL2. Die Spektren dieser Verbindungen weisen stark verbreiterte Linien auf, auch die g-Faktoren sind, im Vergleich zu den freien Liganden, deutlich größer. Offenbar tritt hier das ungepaarte Elektron des Zentralmetallions Kupfer(II) mit den Radikalzentren der Liganden in Wechselwirkung. Dadurch wird die Relaxationszeit der ungepaarten Elektronen der radikalischen Liganden verkürzt, was zu einer Linienverbreiterung führt. Auf eine derartige intermolekulare Wechselwirkung deutet auch die Tatsache hin, daß in den Spektren der Komplexe CuL1 und CuL2 kein durch das Zentralmetallion verursachtes Signal zu beobachten ist. Das Fehlen der vom Kupfer(II)-ion zu erwartenden Signale läßt sich, wie schon mehrfach berichtet⁹⁻¹², dadurch erklären, daß durch eine intermolekulare Annäherung radikalischer NO-Gruppen an das paramagnetische Zentralmetallion die Elektronendichte dort wesentlich erhöht wird. Neben einer teilweisen Abpaarung ungepaarter Elektronen, sowie Relaxationszeitänderungen kann hierbei auch eine, durch die radikalischen NO-Gruppen verursachte, Fremdfeldüberlagerung (supertransfered hyperfine field) zur Unbeobachtbarkeit der Zentralmetallionsignale im ESR-Spektrum führen. Diese Deutung wird auch dadurch gestützt, daß im ESR-Festkörperspektrum von CuL3 neben dem Signal

Verbindung	g-Faktor	a _N in Gauß	Signalhalbwertsbreite in Gauß
	2,0063	7,5	1,8
CuL1	2,0063	4,0	1,2
Pd L1	2,0065	3,75	0,75
PtL1	2,0061	3,75	1,2
L2	2,0069	7,5	3,7
Cu L2	2,0064	3,9	3,4
Pd L2	2,0068	3,75	2,0
Pt L2	2,0068	3,75	2,1
L3	2,0071	7,5	1,7
Cu L3	2,0061	7,5	1,5
Pd L3	2,0072	7,5	1,55
PtL3	2.0079	7.25	1,75

Tabelle 5. Parameter der ESR-Spektren in Lösung, Lösungsmittel CHCl₃, für CuL2 DMF

10 Monatshefte für Chemie, Vol. 114/2

der radikalischen Liganden, im Gegensatz zu den Spektren von CuL1 und CuL2, auch das Signal des Zentralmetallions beobachtet wird. Molekülmodelle zeigen, daß in CuL3, in dem das koordinierende Stickstoffatom in *ortho*-Stellung zum radikalischen Rest des Liganden steht, das Zentralmetallion durch die Liganden derart abgeschirmt ist, daß eine intermolekulare Wechselwirkung mit den NO-Gruppen benachbarter Moleküle unmöglich wird.

Tab. 5 enthält die Parameter der ESR-Spektren der freien Liganden und der Komplexe in Lösung.

Abb. 2. ESR-Spektrum von L3, gelöst in CHCl₃

Die Verbindungen CuL3, PdL3 und PtL3 zeigen typische Quintettspektren, die sich nicht wesentlich von denen der freien Liganden unterscheiden (Abb. 2 gibt das Spektrum von L3 wieder). Auch eine Variation der Probentemperatur zwischen 210 und 330 K verändert die Spektren nicht. Eine intramolekulare Wechselwirkung der Radikalzentren ist in diesen Komplexen offensichtlich aus sterischen Gründen nicht möglich.

Die Spektren der Komplexe mit den Liganden L1 und L2 jedoch weisen Signalmuster auf, wie sie für eine Wechselwirkung der zwei radikalischen Zentren untereinander typisch sind (Abb. 3 zeigt das Spektrum von PdL1).

Statt des Quintettspektrums der freien Liganden wird ein Spektrum von 9 Linien erhalten. Die Intensitätsverteilung der Linien sowie die Kopplungskonstanten a_N erinnern an Spektren von Nitronylnitroxylbiradikalen¹³ oder an solche von Tetranitroxylen^{14,15}. Das Auftreten der Zusatzlinien kommt durch intramolekulare Wechselwirkung der zwei radikalischen Liganden in der *cis*-Konfiguration der Komplexe zustande. Für die *ML2*-Komplexe wurden beispielsweise Dipolmomente zwischen 4 und 6 Debye gemessen, was auf das Vorliegen eines *cis-trans*-Komplexgemisches hindeutet⁸. Im Spektrum von PdL1 entspricht die Intensitätsverteilung fast ideal der isotropen Wechselwirkung eines ungepaarten Elektrons mit 4 Stickstoffkernen, es liegt hier offenbar ein hoher Prozentsatz der Komplexmoleküle in der für den Austausch günstigen *cis*-Konfiguration vor. Die gegenseitige Kopplung der Radikalliganden ist stark, eine Temperaturabhängigkeit

Abb. 3. ESR-Spektrum von PdL1, gelöst in CHCl₃

ist zwischen 210 und 330 K nicht festzustellen, $a_{\rm N}$ beträgt hier etwa $a_{\rm N}/2$ des freien Liganden.

Aus den ESR-Spektren in Lösung kann auf keinerlei Delokalisation des Radikalelektrons in die Pyridinringe der jeweiligen Liganden geschlossen werden, weder bei den freien Radikalen, noch bei den Komplexverbindungen. Es ist auch keine Wechselwirkung intramolekularer Art zwischen den ungepaarten Elektronen der Liganden und dem jeweiligen Zentralmetallion zu beobachten, obwohl bei den Komplexen mit dem Liganden L3 das offensichtlich ausnahmslos und ausschließlich verwendete Koordinationszentrum, das Stickstoffatom des jeweiligen Pyridinsubstituenten des Liganden, sehr nahe am Radikalzentrum liegt. Von Untersuchungen an ähnlichen Verbindungen wird berichtet^{7, 16, 17}, daß nur dann eine Wechselwirkung der 144 K. E. Schwarzhans und A. Stuefer: Übergangsmetallkomplexe

Radikalelektronen mit z. B. kernspinaktiven Metallen beobachtbar ist, wenn diese direkt an der radikalischen NO-Gruppierung koordinieren.

Dem Fonds zur Förderung der wissenschaftlichen Forschung sei für die Förderung dieser Arbeit gedankt.

Literatur

- ¹ Hoffmann A. K., Feldmann A. M., Gelblum E., Hodgsons W. G., J. Amer. Chem. Soc. 86, 639 (1964).
- ² Beck W., Schmidtner K., Chem. Ber. 100, 3363 (1967).
- ³ Eaton S. S., Eaton G. R., Coord. Chem. Rev. 26, 207 (1978).
- ⁴ Weißgerber R., Schwarzhans K. E., Z. Naturforsch. 31 b, 208 (1976).
- ⁵ Nagy V. Y., Estiferov M. V., Petrukhin O. M., Volodarskii L. B., Zolotov Y. A., Anal. Chim. Acta 128, 85 (1981).
- ⁶ Lamchen M., Mittag T. W., J. Chem. Soc. C 1966, 2300.
- ⁷ Helbert J. N., Kopf P. W., Poindexter E. H., Wagner B. E., J. Chem. Soc. Dalton Trans. 1975, 998.
- ⁸ Schwarzhans K. E., Stuefer A., Z. Naturforsch. 36 b, 195 (1981).
- ⁹ Popovich A., Ablov A. V., Kiosse G. A., Zheru J. J., J. Struct. Chem. USSR 12, 749 (1971).
- ¹⁰ Fedrigolli R., Schwarzhans K. E., Z. Naturforsch. 35 b, 68 (1980).
- ¹¹ Simanek E., J. Appl. Phys. 38, 1072 (1967).
- ¹² Huang N. L., Phys. Rev. **156**, 383 (1967).
- ¹³ Ullmann E. F., Ösiecki J. H., Boocock D. G. B., Darcy R., J. Amer. Chem. Soc. 94, 7049 (1972).
- ¹⁴ Rozantsev E. G., Free Nitroxyl Radicals. New York-London: Plenum Press. 1970.
- ¹⁵ Forrester A. R., Hay J. M., Thomson R. H., Organic Chemistry of Stable Free Radicals. London: Academic Press. 1968.
- ¹⁶ Stegmann H. B., Schrade R., Saur H., Schuler P., Scheffler K., J. Organomet. Chem. 214, 197 (1981).
- ¹⁷ Pierpont C. G., Buchmann R. M., Coord. Chem. Rev. 38, 45 (1981).